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The discontinuous Galerkin (DG) methods [1] have received widespread interest in many computational
fluid dynamic applications because of their inherent robustness and many other computational advantages.
These advantages over the traditional counterparts are that they (i) can preserve local conservation, (ii)
can provide arbitrary high-order of accuracy, (iii) are highly parallelizable since elements are discontinuous
and the mass matrix is block diagonal, (iv) are easily amenable to hp-adaptivity since elements need not be
conforming, and (v) allow non-congruent finite element discretization, and meshes with dissimilar adjoint
element types. These features also drawing attention to and gaining a lot of interest in solving pure elliptic
problems [2]. To this end, in this paper we present recent developments of the local discontinuous Galerkin
(LDG) method to linear elasticity problems and outline the pro/cons over traditional paradigms.

Let us consider a linearly elastic body of open bounded volume of Ω ∈ <n with bounded surface ∂Ω. The
body is in static equilibrium under the action of body forces f : Ω → <n, prescribed surface tractions
t : ΓN → <n and prescribed displacement u : ΓD → <n where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The
following second-order elasticity boundary value problem is considered. σij,j = fi in Ω with ui = ui on ΓD
and σijnj = ti on ΓN ; ∀i = 1, . . . , n where n = nj is the unit outward normal to ΓN , the stress tensor
σ = σij, and the strain tensor ε = εij are defined by σij = Cijklεkl; εij = 1

2
(uk,l + ul,k) in Ω. Let us consider

the partition of the domain Ω into elements K such that Ω = ∪iKi. The LDG method for linear elasticity
can be stated as ∫
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where σ̂hij ≡<σhij> −Âijkl[[nkuhl ]] − B̂ijk[[nlσ
h
lk]], û

h
j ≡<uhj > −Ĉjk[[nlσhlk]] − D̂jkl[[nku

h
l ]], < (.)h >≡ ((.)h+ +

(.)h−)/2 is the average, and [[ni(.)
h
j ]] ≡ n+

i (.)h+
j + n−i (.)h−j is the jump operator. It can be shown that

the above method is stable if and only if Âijkl > 0, B̂ijk = −D̂kij in conjunction with the ûhj = ui on
ΓD and σ̂hij = ti on ΓN . In addition, it can be shown that there exists a unique solution for these set

conditions. If Ĉjk = 0 then the above method results in a block diagonal mass matrix which allows for
an easy computation of σhij. The phenomenon of gradient super-convergence, which include acceleration of
convergence with increase in the number of Gauss points for the evaluation of

∫
fiw is demonstrated.
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